
Debugging Techniques for Drupal
(and other web systems)

Robert Ristroph

01Coding and Development



Debugging Techniques for 
Drupal
(and other web systems)

Robert Ristroph
Email & AIM: robert@fourkitchens.com 
Google Chat: rgristroph@gmail.com
Twitter/identi.ca: @robgr
Slides: 
http://munich2012.drupal.org/program/session
s/debugging-techniques-drupal  

mailto:robert@fourkitchens.com
mailto:rgristroph@gmail.com


Outline

I. Why Debugging is Important
II.Structure “Scientific Method” Approach

I. A bug is a model vs. reality mismatch
II.Hypothesize
III.Test
IV.Refine and Repeat

III.Bag of Tricks
I. Clever selection is key



More of your life is 
debugging than coding

As soon as we started programming, we found 
to our surprise that it wasn't as easy to get 
programs right as we had thought.  
Debugging had to be discovered.  I can 
remember the exact instant when I realized 
that a large part of my life from then on was 
going to be spent in finding mistakes in my 
own programs.

--Maurice Wilkes, 1949, developing the first stored 
program computer  



What is Debugging ?
Not simply good development practices

Not making random changes (more bugs)

Not making changes because of a clearer 
specification

Even fixing the bug, once found, is not different 
from other coding

Debugging is developing an 
understanding of a coding error, so 
that the behavior of the code and 
your expectations of it match.



Bugs are Programmer's 
Errors
Bugs don't fly in and creep into code in the night, or 
appear as the 0s and 1s get old and rusty.  A 
programmer puts them there – keep this in mind if 
you want to produce fewer bugs over time.

By the time you are debugging, a bug is a mismatch 
between your mental model of what the code 
should do and what it does.



 

wikipedia.org/wiki/Software_bug#Etymology



Hypothesize and Test
(1)Gather initial info (logs, screenshots)
(2)Make a hypothesis 
(3)Test it, analyze
(4)Refine Hypothesis, go to (2)

●Similar to the scientific method
●Can be learned but not taught

•The key is making hypotheses that are easy to 
test, and also help your understanding of the 
code.



Gather Information
●Learn the location of all logs – look at lesser 
known (mysql)
●Watchdog / syslog
●Teach your users how make good bug reports
●Make sure your user knows how to take a 
screen shot

Project and account managers, or other non-
developers, can be extremely valuable to your 
organization by getting good bug reports



Replicate the Bug
●User reports are important
●Worst case is making changes, waiting to see if 
the customer reports the problem is still there
●Replication can be tedious, and take as much 
insight as any part of debugging
●Observe and think about your user's operating 
procedure
●Without being able to replicate the bug, you 
can't debug



Cheap Tests First
●Clear all caches (browser, Drupal, Varnish, any 
other) (not a fix, just a test)
●Check that the right version of the code is on 
the server
●Change to a default theme
●Check for old js / css being delivered from a 
CDN
●Remember all the dumb mistakes you have 
made, and check for them . . . “check the plug”



Did Anyone Else Solve It ?
If simple checks haven't found it, check d.o issue 
queues and the web.

●Art to searching – use exact error messages, 
except for node numbers and etc
●Ask on #drupal-support
●Try dev version of modules ( be sure you can 
undo )
●Always post – to describe your problem on 
related issues, to confirm when you have solved 
it



Common Problems
●Permissions on an input filter
●Rebuild node_access table
●Permissions on imagecache and aggregated 
js/css files (whole /sites/all/files)
●Content Permissions is giving access to some 
CCK fields and not others
●Cron related (cron_semaphore)
●Keep your own list (perhaps per-project)

List-checking for cheap and common bugs can't 
replace thinking.



Uncommon Problems
●Rare and obscure problems are useful mainly as 
“war story” material, and teaching debugging.
●Lists of cheap tests and common bugs should 
be short
●Quickly get into “thinking mode” and 
hypothesize – test – analyze – repeat 



Inspection
●Krumo / devel module
●print(“<pre>”.$stuff.”</pre>”);
●print(“<pre>”.print_r($stuff,TRUE).”</pre>”);
●Use watchdog() for values on pages that refresh 
or are in a cron hook
●xdebug / breakpoints / code tracing – great but 
don't let it stop you from thinking of good tests ( 
new golf clubs vs. golf lessons )
●Have a standard debugging setup as part of 
your development (before debugging) (try 
Quickstart project) 



Inspecting the Database
Always keep a copy of the DB in one state, do 
experiments, the compare (then restore to 
original state)

●Having a “starting point” db copy can be key to 
replicating problems
●Use drush to dump variables to files, then diff
●Try not to end up blindly scanning the 
differences; develop hypothesis / guess / theory 
and look for that specifically 



Devel Module
●Node access / permissions block for debugging
●User switcher for recreating problems (have a 
test user for every role)
●Look at query list
●Devel features are a kind of “common 
problems” list



Theme Debugging

●Devel module themer module (devel_themer)
●Limits on the number of CSS files - IE especially 
- things only work when you use css aggregation
●Typography, and even color profiles in images 
are handled differently in different browsers, 
platforms 
●Inherently distributed system with many 
languages / technologies, lots of compromises 
and tweaking



Performance
●Learn how to use “ab” (apache bench)
●Wget spiders
●Load Storm (commercial service)
●MySQL logs and innotop
●Cool trick: put a header indicating a cache hit or 
miss, that you can look for with the 
LiveHTTPHeaders Firefox installation
●Use of xhprof or performance should be 
targeted at a problem – however historical 
performance numbers for your site are very 
useful
Like any other debugging, but replication is 

complicated and inspection tools different.

 



“Interaction” Bugs are the 
Hardest

 

The hardest bugs only appear when two “bug 
free” components interact.

●Module weights, order of hook operations
●Theme / module interactions
●External service requests
●Mis-use of APIs
●Unexpected cache clear causes performance 
issues

If your problem is resistant to being narrowed to 
a certain component, think along these lines.



Further Reading

 

“Debugging: The Nine Indispensible Rules” 
by David J. Agans
http://www.debuggingrules.com/

1) Understand the System
2) Make it Fail
3) Quit Thinking and Look
4) Divide and Conquer
5) Change One Thing at a Time
6) Keep an Audit Trail
7) Check the Plug
8) Get a Fresh View
9) If You Didn't Fix It, It Ain't Fixed

http://www.debuggingrules.com/


Conclusion

 

●Coming up with the right guesses and tests is 
more important than fancy tools
●The hardest bugs will be ones that are caused 
by interactions
If you pay attention to how you debug, you will 
get better at it.

Expert debugging is not hard to learn if you try, 
but is hard to teach; there is no recipe you can 
blindly follow.



What did you think?

Download the slides and leave feedback 
on the 

DrupalCon Munich website:
http://munich2012.drupal.org/program/sessions/debugging-

techniques-drupal

Thank you!

03




	Slide 1
	Presentation title
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

